Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 582-589, 2016.
Article in English | WPRIM | ID: wpr-812589

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for a number of enzymes and regulatory proteins involved in a variety of cellular processes, including deacetylation enzyme SIRT1 which modulates several tumor suppressors such as p53 and FOXO. Herein we report that NQO1 substrates Tanshione IIA (TSA) and β-lapachone (β-lap) induced a rapid depletion of NAD(+) pool but adaptively a significant upregulation of NAMPT. NAMPT inhibition by FK866 at a nontoxic dose significantly enhanced NQO1-targeting agent-induced apoptotic cell death. Compared with TSA or β-lap treatment alone, co-treatment with FK866 induced a more dramatic depletion of NAD(+), repression of SIRT1 activity, and thereby the increased accumulation of acetylated FOXO1 and the activation of apoptotic pathway. In conclusion, the results from the present study support that NAMPT inhibition can synergize with NQO1 activation to induce apoptotic cell death, thereby providing a new rationale for the development of combinative therapeutic drugs in combating non-small lung cancer.


Subject(s)
Humans , Abietanes , Pharmacology , Apoptosis , Carcinoma, Non-Small-Cell Lung , Drug Therapy , Genetics , Cell Line, Tumor , Cytokines , Genetics , Metabolism , Enzyme Inhibitors , Pharmacology , NAD , Metabolism , NAD(P)H Dehydrogenase (Quinone) , Genetics , Metabolism , Naphthoquinones , Pharmacology , Nicotinamide Phosphoribosyltransferase , Genetics , Metabolism
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 815-822, 2015.
Article in English | WPRIM | ID: wpr-812476

ABSTRACT

As a computer-assisted approach, molecular docking has been universally applied in drug research and development and plays an important role in the investigation and evaluation of herbal medicines. Herein, the method was used to estimate the pharmacodynamics of Mai-Luo-Ning injection, a traditional Chinese compound herbal prescription. Through investigating the interactions between several important proteins in cardiovascular system and characteristic components of the formula, its effect on cardiovascular protection was evaluated. Results showed the differences in the interactions between each component and the selected target proteins and revealed the possible mechanisms for synergistic effects of various characteristic components on cardiovascular protection. The study provided scientific evidence supporting the mechanistic study of the interactions among multi-components and targets, offering a general approach to investigating the pharmacodynamics of complicated materials in compound herbal prescriptions.


Subject(s)
Humans , Cardiovascular Agents , Pharmacology , Cardiovascular System , Metabolism , Drug Synergism , Drugs, Chinese Herbal , Pharmacology , Enzymes , Metabolism , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL